
D I G I T A L  C O M P U T E R  C A L C U L A T I O N  OF T E M P E R A T U R E  

F I E L D S  P R O D U C E D  I N  A W O R K P I E C E  BY R E P E A T E D  

A P P L I C A T I O N S  O F  A S O U R C E  O F  H E A T I N G  
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A method of digital compute r  calculat ion of the t e m p e r a t u r e  f ields produced in a component 
under conditions of repea ted  heat ing and cooling is desc r ibed .  The t e m p e r a t u r e  fields p ro -  
duced by in ternal  grinding a r e  calcula ted.  

Var ious  engineer ing  methods of calculat ion a re  known, by means  of which the t he rma l  and res idual  
s t r e s s e s  produced in a component  during machining can be calculated and the possible  occur rence  of s t r u c -  
tu ra l  changes inves t igated.  These  methods presuppose  knowledge of the t e m p e r a t u r e  f ie lds  produced in the 
components .  

Although the re  a r e  many papers  of an applied c h a r a c t e r  on this subject  [1-3] they all adopt a compu-  
tat ional  scheme  involving a single appl icat ion of the source  of heat to the component .  

There  a re  many engineer ing p r o c e s s e s  in which the component  is heated and cooled in a per iodic  
manne r .  Fo r  example ,  in a r ea l  grinding p rocess  the component is per iodical ly  heated in the cutting zone 
and cooled outside this zone. The fo rm u l a s  given in the cited papers  will re f lec t  the t rue  picture  only p ro -  
vided the component  manages  to lose all  i t s  heat during the cooling per iod and provided the boundary condi-  
t ions  do not change. The re  is much expe r imen ta l  evidence that the t h e r m a l  p r o c e s s e s  do not have t ime to 
s tabi l ize  t h e m s e l v e s  during a single revolut ion of the workpiece even when steps a re  taken to cool it. In 
grinding prac t i ce  it ve ry  often happens that the workpiece is  machined without any cooling at all (internal 
grinding, pointing, and so on). 

Evidently,  a calculat ion of the t e m p e r a t u r e  field which is based upon a single applicat ion of the source  
of heat  cannot give the t rue  pic ture  of the t e m p e r a t u r e  dis tr ibut ion in such cases .  

An a t tempt  is made in the p resen t  a r t i c l e  to develop a computat ional  scheme sui table for  repeated  
appl icat ions of the source  of heat .  The r e su l t s  show that in some cases  the s ingle-appl ica t ion  scheme  p r e -  
dicts  t e m p e r a t u r e s  that  a re  much too low, s o m e t i m e s  d i s to r t s  the t e m p e r a t u r e  f ields produced in the c o m -  
ponent, and fai ls  to give re l iable  e s t i m a t e s  of the m a x i m u m  t e m p e r a t u r e s  p r o d u c e d - s o m e t h i n g  absolutely 
essen t i a l  in the invest igat ion of poss ib le  s t r uc tu r a l  changes.  Also, computat ions based on the s ing le -app l i -  
cation scheme do not yield the t rue  t e m p e r a t u r e  grad ien ts .  

The k inemat ics  of grinding imply that during the machining p r o c e s s  each point of the workpieee is 
per iodica l ly  heated (when it comes  into contact  with the ab ra s ive  disc) and cooled (in the period between 
contacts) .  Each of the cyc les  of heating and cooling is cha rac t e r i zed  by i ts  own boundary conditions r e l a t -  
ing to the t h e r m a l  s ta te  of the component .  

We cons ider  the following boundary p rob lem of t h e r m a l  conductivity: 

cycle I (grinding) 

Oul (x, t) O~ul (x, l) {~-< x < c~ 1 
Ot Ox e .~ t < t gr ) ' 

a~ (x, O) = O; 

)~ au, (0, t _  ) +  q =0; u i (c~, t) =0; 
Ox 
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Fig, 1. Block diagram of program for computing temperature fields on the Minsk-22 digital 
computer. 1) Input of initial data and printing of symbol characterizing variant; 2) computa- 
tion of time step and of mesh dimensions for grinding and cooling stages; 3) computation of 
temperatures at mesh nodes during grinding stage; 4) transfer of temperature values of last 
time sheet of previous operator to zeroth time sheet of subsequent operator; 5) computation 
of temperature values at mesh nodes during cooling stage; 6) logical comparison of previous 
heating-cooling stages with subsequent; 7) stop, 

Fig. 2. Temperature fields produced by internal grinding. Units: u (~ x (turn). 

cycle H (cooling) 

cycle III (grinding) 

Ot Ox ~ [0 -<2.. t < ~cool J ' 

us(X, O) =: ul(x, tgr); 

Ou 2 (0, t) au 2 (0, t) =0; u~ (oo, 0 = O; 
O x +  

ou+(x, 0 O%(x, t) fO.<x< +01 
Ot Ox + 10-~< t <  tgr j 

u3(x, O)=u2(x, tcooi); 
~ Ou2(O, t) ? q =  O; u~(oo, t)=O 

Ox 

and so on+ 

In this manner the real grinding process is described by a sequence of alternating second and third 
boundary problems of thermal conductivity. 

Evidently, a stationary regime will be set up some time after grinding has begun. The error in the 
single-application computational scheme stems from the fact that the transient process is disregarded. 

To solve the boundary problem formulated above we utilized the explicit difference scheme described 
in [4-6]. The stability condition imposes a limitation on the permissible magnitude of the time step, which 
slightly increases the number of nodes of the computational mesh in comparison with other mesh methods. 
As far as the use of digital computers is concerned, however, this is more than offset by the great simpli- 
city of the algorithm for computer realization of the explicit method. 

The equation of thermal conductivity is replaced by the following finite-difference equation: 

={1  21a ~ , la 

Remembering the condition for convergence of the method 
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and taking 

we obtain 

h 2 
f -<. - -  (2)  

2a 

h 2 

l = 4a (3) 

1 
u,.k+l = -~ [2u,.~ + (u,+~ § ui.l,~)l. (4) 

Thus, to obtain the t empera tu re  fields in the component, the basic  ar i thmet ica l  opera tor  of the meth-  
od must  rea l ize  formula  (4) for all nodes of the computational mesh.  

To simplify the calculations we go over  f rom the case of a semi-infini te  rod (0 - x < ~) to a rod of 
finite length (0 ~ x -< H). The quantity H we take to be the depth at which the thermal  flux at the end face 
(x = 0) has no effect on the duration of the entire machining p rocess  (H is obtained f rom experimental  data). 
At the end face (x = 0) we real ize  the boundary conditions corresponding to the given cycle (second kind for  
grinding, third kind for  cooling). 

The computational step h in the spatial  variable we choose in accordance  with the required accuracy .  
The step l, as previously mentioned, is determined f rom condition (2). 

A block diagram of a p rogram for  putting the computational algori thm into effect on the Minsk-22 is 
given in Fig. 1. 

As can be seen f rom the block d iagram the p rogram can be used to calculate the tempera ture  fields 
produced during grinding. Some exper imental  data are  required by way of initial values: the heat flux den- 
sity q at the workpiece- tool  contact; the coefficient of heat exchange during cooling (~; the depth H at which 
the heat flux at the end face (x = 0) has no effect on the duration of the ent i re  period of t reatment  (more 
precisely ,  on the duration of the t ransient  regime).  

The program yields not only the fields after the f i rs t  pass and in the stat ionary regime (from which 
the e r r o r  of the s ingle-applicat ion scheme can be estimated) but also the fields of maximum tempera tures ,  
f rom which conclusions can be drawn concerning the possibility of s t ruc tura l  changes in the workpiece.  

The p rogram was employed to calculate the t empera tu re  fields produced during the internal grinding 
of an alloy with a the rmal  conductivity ~ = 40 W / m - d o g .  

The resul ts  of the calculations are presented in Fig. 2, which shows the t empera tu re  fields produced 
under various grinding conditions (for curves  1-4, 7, 8 the workpiece velocity Vwp = 0.2 m/see ,  t = 0.01ram; 
for  curves  5 and 6, Vwp= 0.5 m / s e e ,  t = 0.01 ram). Curves 1, 3, 5 correspond to the peak tempera tures  
and curves  2, 4, 6 to the peak t empera tu re  gradients .  Curves 3 and 4 depict the t empera tu re  field af ter  
grinding cycle t. The heat remaining in the workpiece af ter  the cooling cycle I (~ = 11,700 W / m  2 -dog) 
gives r i se  to the t empera tu re  field Shown by curve 8. 

With succeeding g r ind ing -coo l ing  cycles  the contact t empera ture  increases ,  as does the amount of 
res idual  heat and the depth to which the workpiece is heated. Curves 1, 2, and 7 depict the thermal  state 
of the workpiece af ter  cycle XV; the contact tempera ture  has increased  by 105~ and the amount of accu-  
mulated heat by more  than a fac tor  of 3. This can have a considerable effect on s t ruc tura l  changes and 
thermal  deformat ions .  

Increas ing the speed of the workpiece helps to reduce the contact t empera tu re  and the amount of accu-  
mulated heat.  For  Vwp = 0.5 m / s e e  there is no accumulat ion of heat, i .e. ,  the heat  produced during a g r ind-  
ing cycle is corapletely lost during the subsequent cooling cycle.  Only under such conditions is it possible to 
utilize the formulas  derived on the assumption of a single application of the grinding tool. 

An advantage of the computationaltechnique described above is that it is readily adapted to deal with the 
quas i - l inear  formulat ion of the the rmal  conductivity problem in which allowance is made for  the tempera ture  
dependence of the thermophysica l  constants of the mater ia l  of the workpiece.  

N O T A T  ION 

is the tempera ture  of the point with coordinate x; 
is the t ime of heating or  cooling; 

1432 



q 
~, a 

h 

c~ 

H 
Vwp 

1, 

2. 
3. 
4. 

5, 

6. 

is the thermal flux density; 
are the thermophysical constants of the material of the workpiece; 

is the space variable computational step; 
is the computational time step; 

is the heat exchange coefficient; 
is the depth at which heat source ceases to have m] effect; 
is the translational velocity of workpiece. 
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